• Home
  • About

Shores of the Dirac Sea

A blog about physics… mostly.

Feeds:
Posts
Comments
« Pure vs applied research
Quick link »

Black holes as frozen stars

February 19, 2009 by Moshe

We now have a few working examples of a microscopic theory of quantum gravity, all come with specific boundary conditions (like any other equation in physics or mathematics), but otherwise full background independence. In particular, all those theories include quantum black holes, and we can ask all kinds of puzzling questions about those fascinating objects. Starting with, what is exactly a black hole?

In classical general relativity black hole is simply a fully collapsed star. This is a system where, in the end of its long evolution, gravity has become the dominant force, pushing matter into ever increasing density. Until, after some finite time, the matter becomes so dense that we lose our ability to describe the system using known physics. This is sometimes called the singularity, but I don’t like the name too much, since it suggests something special and mysterious is happening. The only thing special going on is that we, humans living on earth in 2009, cannot adequately describe the physics there. Thinking in a slightly less anthropocentric way is, I would think, a good habit when you’re doing physics (but I may be behind the times on this).

Since the collapsed star is extremely dense, the escape velocity is extremely high. The denser it becomes, the more difficult it is too leave. At some stage (but long before we have to plead ignorance and start using fancy sounding words), the escape velocity exceeds the speed of light, so nothing at all can escape. Hence the clever name (black hole, got it?). A classical black hole is distinguished by having an horizon: if you are slightly inside the horizon, you are bound to the collapsing star, sharing the same fate without ever being able to escape.

For an observer staying far from the collapsed star, and in particular one staying outside the horizon at all times, the picture is more elaborate, especially when we take quantum effects into account. I’ll concentrate mainly on observers like those, because we know a lot more about them (or should I say us?). Far away from the black hole gravity is weak, so we have every right to expect that quantum mechanics as we know it describes the experience of those observers faithfully (as usual, by quantum mechanics I really mean quantum field theory, which is our best description of nature as we know it).

On the other hand, in-falling observers will inevitably (sooner or later) experience strong quantum gravity effects, for example time will likely end for them, whatever that may mean. In short, it may be pretty tricky to use our experience, and our best theories, to infer anything about the experience of in-falling observers. Let’s leave that to the very end, as that issue is still not very well-understood (at least not by me).

So, to be conservative, let’s discuss first observers staying at a safe distance from the black hole at all times, and describe what a classical or a quantum black hole looks like for them. One important fact is the following: when observing objects falling towards the horizon, the curved spacetime metric means that the local time is dilated with respect to yours. The time dilation factor becomes infinite as the objects approach the horizon. That is the reason why black holes were referred to, before John Wheeler came up with that clever catch phrase, as “frozen stars”. I like this name a lot, since this is exactly how the situation looks to us, the asymptotic observers, at least classically. As objects approach the horizon, all their internal processes (as we see them) slow down, they “freeze”.

This also means that as objects approach the horizon, we are able to see their short distance structure, the horizon is effectively a microscope. Because of the time dilation factor, we can now see processes that are normally too fast for us to observe. In a relativistic theory this also means short distance physics, in quantum mechanics this also means high energy physics. It is then plausible that for an adequate understanding of the physics of the horizon, we the asymptotic observers will need to use at least some quantum mechanics. This is where the story gets really interesting, but word count tells me it is probably better to postpone all of that till the next post.

Advertisements

Rate this:

Like this:

Like Loading...

Related

Posted in gravity, high energy physics, quantum fields, Quantum Gravity, relativity, string theory, thermodynamics | 13 Comments

13 Responses

  1. on February 19, 2009 at 10:09 am Astronomy Link List

    Added to the Astronomy Link List


  2. on February 19, 2009 at 3:19 pm CTReader

    Moshe,

    Excellent post! This is exactly the sort of post that brings me back here time after time. Looking forward to the follow-on.

    Keep up the good work, you are much appreciated.


  3. on February 20, 2009 at 1:14 am Gordon

    Was it really Wheeler who came up with the term “FROZEN STARS”—I remember that the Soviets used that term before black hole. Back in 1971, Zel dovich and Novikov used the term in their book, Relativisitic Astrophysics.


  4. on February 20, 2009 at 1:16 am Gordon

    Oh, I see you said that he coined black holes. Apologies.


  5. on February 20, 2009 at 1:23 am Just Learning

    Great post!

    Frozen Stars seems much more intuitive than black holes.


  6. on February 20, 2009 at 2:59 pm Plato

    COSMIC SEARCH: How did you come up with the name “black hole”?

    John Archibald Wheeler:It was an act of desperation, to force people to believe in it. It was in 1968, at the time of the discussion of whether pulsars were related to neutron stars or to these completely collapsed objects. I wanted a way of emphasizing that these objects were real. Thus, the name “black hole”.

    The Russians used the term frozen star—their point of attention was how it looked from the outside, where the material moves much more slowly until it comes to a horizon.* (*Or critical distance. From inside this distance there is no escape.) But, from the point of view of someone who’s on the material itself, falling in, there’s nothing special about the horizon. He keeps on going in. There’s nothing frozen about what happens to him. So, I felt that that aspect of it needed more emphasis.

    See:John A. Wheeler – From the Big Bang to the Big Crunch


  7. on February 20, 2009 at 4:42 pm Moshe

    Great quote Plato (on the other hand, I don’t think we need to derive the escape velocity for photons here). I am puzzled though, because the “blackness” of the collapsed star is also a feature that is only meaningful for an outside observer. While we are concentrating on the experiences of an outside observer, as I think we should, I personally find the “frozen” aspect much more significant than the “blackness” one, for reasons I’ll elaborate on later. In any event, to make sure we are all on the same page, this is a purely semantic discussion at this point.


  8. on February 20, 2009 at 6:32 pm Plato

    Hi Moshe,

    Yes, most certainly a generalization then.

    I think Bee’s post should be linked here for reference?

    Best,


  9. on February 22, 2009 at 2:08 am Phil Evans

    Was it really Wheeler who coined the term ‘Black Hole’?
    In his book Geons, Black Holes and Quantum Foam Wheeler says (p296 in my 1998 Norton paperback edition)

    …I remarked that one couldn’t keep saying “gravitationally completely collapsed object” over and over. One needed a shorter descriptive phrase. “How about black hole?” asked someone in the audience. I had been searching for just the right term for months, mulling it over in bed, in the bathtub, in my car, whenever I had quiet moments. Suddenly this name seemed exactly right. …..a few weeks later, on December 29, 1967, I used the term, and then included it in the written version of the lecture published in the spring of 1968.

    Is wheeler admitting that it was someone else who coined it?


  10. on February 22, 2009 at 2:22 am Moshe

    The term is usually attributed to Wheeler, but I don’t really know if this is true (or frankly, care too much). The only thing I can say that, unlike Feynman or Mark Twain, Wheeler doesn’t seem to have everything under the sun instinctively attributed to him, so he is likely to have at least something to do with “black holes”.


  11. on February 22, 2009 at 4:58 pm Plato

    AS well, you’d almost think he was postulating something else in relation to the issues with Einstein?:)

    Geons, Blackholes & Quantum Foam, by John Archibald Wheeler, with Kenneth Ford, page 236, para 2.
    ”

    This hypothetical entity, a gravitating body made up entirely of electromagnetic fields. I call geon(g for the gravity, e for electromagnetism,” and on as the word root for”particle”). There is no evidence for geons in nature and later was able to show that they are unstable-they would quickly self-destruct if they were ever to form. Nevertheless it is tempting to think that nature has a way of exercising all the possibilities open to it. Perhaps geons had a transitory existance early in history of the universe. Perhaps(as some students and I speculate much more recently), they provide an intermediate stage in the creation of the blackholes

    Moshe,

    I know it’s pointless, but if you have one verbatim and one established in book form, it’s enough don’t you think then just to wipe off as attributing it to someone? 🙂

    Best,


  12. on February 22, 2009 at 8:59 pm Plato

    You know what, I think one may be able to ask Bill Unruh that question if he’s not to busy?:)

    Maybe not.

    Best,


  13. on February 24, 2009 at 5:47 pm bubble rap - fractalnavel

    […] that often mean those static approximations aren't even achievable ?  with regards to black holes v. "frozen stars", I […]



Comments are closed.

  • Recent Posts

    • Whoop!
    • Gravitational waves announcement from LIGO expected
    • GR turns 100
    • Nobel Prize in Physics awarded to Higgs and Englert
    • HEP job at UCSB
  • Archives

    • February 2016
    • November 2015
    • October 2013
    • September 2013
    • August 2013
    • June 2013
    • May 2013
    • April 2013
    • March 2013
    • February 2013
    • January 2013
    • November 2012
    • September 2012
    • August 2012
    • July 2012
    • May 2012
    • March 2012
    • February 2012
    • January 2012
    • December 2011
    • November 2011
    • September 2011
    • July 2011
    • June 2011
    • May 2011
    • April 2011
    • March 2011
    • February 2011
    • January 2011
    • December 2010
    • November 2010
    • October 2010
    • September 2010
    • August 2010
    • July 2010
    • June 2010
    • May 2010
    • April 2010
    • March 2010
    • February 2010
    • January 2010
    • December 2009
    • November 2009
    • October 2009
    • September 2009
    • August 2009
    • July 2009
    • June 2009
    • May 2009
    • April 2009
    • March 2009
    • February 2009
    • January 2009
    • December 2008
    • November 2008
    • October 2008
    • September 2008
  • February 2009
    M T W T F S S
    « Jan   Mar »
     1
    2345678
    9101112131415
    16171819202122
    232425262728  
  • Recent Comments

    Wyrd Smythe on Whoop!
    Kate on Nobel Prize in Physics awarded…
    dberenstein on HEP job at UCSB
    Lubos Motl on HEP job at UCSB
    dberenstein on HEP job at UCSB
  • Physics/Math/Science Blogs

    • Asymptotia (Clifford Johnson)
    • Backreaction
    • Coctail Party Physics
    • Cosmic Variance
    • Dmitry Podolsky
    • Jeffrey Epstein Science
    • John Baez
    • Michael Nielsen
    • Musings (Jacques Distler)
    • Not even wrong
    • Resonaances
    • Robert Helling
    • Shtetl Optimized
    • Sunclipse
    • Terry Tao
    • Tomasso Dorigo
    • Uncertain Principles
  • Science Resources

    • Physics (APS journal)
    • Scientific American
  • Some More Blogs

    • Evil Inc
    • Fafblog
    • phd Comics
    • Regator
    • Scenes from a multiverse
    • Site Meter
    • WordPress.com
    • WordPress.org
  • Pages

    • About
  • Meta

    • Register
    • Log in
    • Entries RSS
    • Comments RSS
    • WordPress.com

Create a free website or blog at WordPress.com.

WPThemes.


Cancel
%d bloggers like this: